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A PUBLIC AUDIO IDENTIFICATION EVALUATION FRAMEWORK
FOR BROADCAST MONITORING

Mathieu Ramona1, Sébastien Fenet2, Raphaël Blouet3, Hervé Bredin4,
Thomas Fillon2, and Geoffroy Peeters1
1IRCAM, Paris, France
2Institut Télécom, Télécom ParisTech, CNRS-LTCI, Paris, France
3Yacast, Paris, France
4LIMSI-CNRS, Orsay Cedex, France

& This paper presents the first public framework for the evaluation of audio fingerprinting
techniques. Although the domain of audio identification is very active, both in the industry
and the academic world, there is at present no common basis to compare the proposed techniques.
This is because corpuses and evaluation protocols differ among the authors. The framework we
present here corresponds to a use-case in which audio excerpts have to be detected in a radio broad-
cast stream. This scenario, indeed, naturally provides a large variety of audio distortions that
makes this task a real challenge for fingerprinting systems. Scoring metrics are discussed with
regard to this particular scenario. We then describe a whole evaluation framework including an
audio corpus, together with the related groundtruth annotation, and a toolkit for the computation
of the score metrics. An example of an application of this framework is finally detailed, that took
place during the evaluation campaign of the Quaero project. This evaluation framework is publicly
available for download and constitutes a simple, yet thorough, platform that can be used by the
community in the field of audio identification to encourage reproducible results.

INTRODUCTION

Audio identification is a special case of audio event detection that
covers the detection and the identification of an audio excerpt (a music
track, an advertisement, a jingle, etc.) in an audio recording (either a short
excerpt or a broadcast stream). Two techniques are used for that purpose:
audio watermarking, which relies on embedding meta-information, robust to
common alterations, within the audio signal and audio fingerprinting (some-
times called audio hashing), where audio occurrences are detected through
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the recognition of code signatures extracted from short snippets of the sig-
nal. These signatures are designed to make a compact representation of the
audio content, linked to some perceptually relevant cues, which remains
robust to typical distortions observed on audio signals, such as dynamic
compression, various encodings, equalization, time scale changes, etc.
Because audio watermarking implies an initial processing of the signal
source to embed the watermark, it cannot be applied to unknown signals.
This paper, hence, focuses on audio fingerprint techniques for audio
identification.

The audio identification technology underlies several key applications,
including broadcast monitoring, internet content identification, copyrights
control, and interactive behavioral targeted advertising. This explains a
great effort of contributions in the community during the last decade,
despite the relative novelty of the domain, mostly from industrial actors,
such as Philips (Haitsma and Kalker 2002), Shazam (Wang 2003), Google
(Weinstein and Moreno 2007), (Mohri, Moreno, and Weinstein 2008),
Fraunhofer (Allamanche et al. 2001), (Herre, Allamanche, and Hellmuth
2001), or Microsoft (Burges, Platt, and Jana 2003), (Burges, Platt, and Jana
2002). Many propositions also emerge from the academic research area:
Ircam owns a technology based on a double-nested Fourier transform
(Rodet, Worms, and Peeters 2003), NTT Basic Research Lab has proposed
the active search algorithm (Smith, Murase, and Kashino 1998), and the
Pompeu Fabra University owns a technology based on the so-called audio
DNA model (Neuschmied, Mayer, and Batlle 2001), (Cano et al. 2002).

However, it remains impossible at present to compare the different sys-
tems described in the literature, because no common framework or corpus
has been proposed, apart from the TRECVid evaluation on video copy
detection (Smeaton, Over, and Kraaij 2006). Indeed, most of the evalua-
tions are applied to private corpuses, of which volume and nature vary
greatly between the articles. Also, the evaluation protocols, as well as the
scoring metrics, are generally based on different use-cases and reflect differ-
ent underlying priorities for the authors, which induce very different
insights and conclusions on the algorithms.

Moreover, because the key point of audio fingerprinting is the detection
of audio events under common distortions, evaluations are often based on
the application of controlled synthetic audio distortions applied to audio
items, which do not necessarily reflect the constraints of a real-world use-case.

We thus propose in this article the first public evaluation framework
focused on audio identification, based on a scenario involving the detec-
tion of audio excerpts in broadcast radio streams. The framework consists
of a public corpus and an evaluation toolkit named PYAFE. This corpus is
not based on artificial audio degradations but on the real-world degrada-
tions induced by the radio broadcast production, which implies a wide
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variety of combined distortions. This corpus hence makes a challenging
and realistic task for audio identification methods. Relevant metrics,
related to the use-case, are also provided, together with a discussion about
their respective characteristics.

These contributions define a consistent evaluation framework that is
made publicly available to the community in order to encourage bench-
marking in the field of audio identification instead of private evaluations.
We will then thoroughly describe the process and the results of the first
evaluation campaign of the Quaero project1 on audio identification, held
in September 2010, which is based on this evaluation framework.

This paper is structured as follows. First, the various evaluation schemes
in the literature will be briefly examined, in order to give an outline of the
common protocols, as well as the synthetic audio degradations generally
used to assess the robustness of the fingerprint codes. A new evaluation
framework will then be proposed, which includes a corpus and an evalu-
ation toolkit. The latter includes the implementation of the scoring metrics
discussed earlier. Then, the next section will detail an example of the appli-
cation of this framework on the evaluation campaign of the Quaero project,
together with the results of the participants. Some comments and
short-term perspectives on the framework will finally be given in the con-
cluding section.

AUDIO IDENTIFICATION EVALUATION

Audio Identification in the Context of Event Detection

Audio event detection covers a wide range of scenarios of audio analysis.
Depending on the type of events that must be recognized, their duration,
and their acoustical variability, varying techniques are employed.

Frame-based classification methods are generally used when each event
is defined by an acoustic source, such as gun shots (Clavel, Ehrette, and
Richard 2005), applause or cheers (Cai et al. 2003). More general acoustic
classes, such as speech or music, can also be considered as audio events,
and involve a very large literature (Lin et al. 2005; Ramona and Richard
2009, etc.). This kind of problem implies the use of statistical methods to
cover the whole range of variability of the acoustic sources, and focuses
on the possible confusion among the classes.

On the other hand, events may not denote sources, but audio signals
themselves, as in the detection of jingles (Pinquier and André-Obrecht
2004), advertisements, or musical tracks. This scenario dramatically reduces
the scope of variations of the event occurrences, which is restricted to typi-
cal audio degradations that affect the signal while keeping it perceptually
recognizable.
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This case covers what is denoted by audio identification in this paper. It is
characterized by the fact that a single example is available for each event in
the training process and involves specific techniques: typically audio finger-
printing and audio watermarking. Another typical aspect of this scenario is
the very large number of events generally involved. For instance, a music
track identification task can scale up to several million different classes.
The confusion among classes is thus critical, because the slightest overlap
might lead to a very large number of false alarms. The audio identification
scenario thus focuses on the compromise between discrimination and
robustness to audio degradations.

Figure 1 illustrates the typical workflow of an audio fingerprinting
system. As all machine-learning systems, audio fingerprinting requires
two modes. The first is the database creation, where the set of target audio
items is processed by the system for the extraction of their fingerprints.
All fingerprints are stored in a database and allow to link a given content
to tags or to metadata. The other mode allows audio identification, based
on the fingerprints computed from the audio stream.

Although the framework presented here is originally dedicated to the
evaluation of works on audio fingerprinting, it can indeed be used for any
audio identification task, with no restriction on the technique employed.

The following sections detail the typical audio degradations found in the
literature, as well as the evaluation protocols for audio identification systems.

Considering Usual Audio Degradations

A very diverse panel of audio degradations can be found in the litera-
ture, designed to reproduce most of the audio effects that can be applied
to an audio signal, affecting its quality, without changing its semantic
content (i.e., what is perceptually received by the listener). Most of them

FIGURE 1 Illustration of the audio fingerprinting workflow. (Figure is provided in color online.)
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are inspired by the studies on robustness of Haitsma and Kalker (2002) and
Allamanche et al. (2001).

The main issue of this discussion is the distinction among three kinds of
degradations:

. Numerical degradations, by far the most convenient to apply, because they
can be simulated numerically.

. Acoustic degradations, which involve somehow a conversion to acoustic
waves. Their simulation requires more equipment (microphones, loud-
speakers, etc.), but remains possible.

. ‘‘Real-world’’ degradations are a much more complex blend that combines
numerous degradations and requires a whole sound production chain,
e.g., broadcast radio production and transmission.

We detail here most of the degradations found in the literature, which
fall in the first two categories:

Audio encodings (numerical):

. MP3 or WMA encoding=decoding, from very low (8 kbps) to usual bitrates
(128 kbps),

. Real Media encoding=decoding,

. GSM encoding=decoding, at full rate, with a controlled carrier to inter-
ference (C=I) ratio,

. Resampling, down to half the sample rate and up again.

Filtering (numerical):

. All-pass filtering, using an IIR filter,

. Equalization, with a 10 to 30-band equalizer,

. Band-pass filtering,

. Telephone band-pass, between 135 and 3700Hz,

. Echo filter, simulating old time radio.

Noise addition, of controlled SNR (numerical):

. White noise addition, using a uniform or gaussian white noise,

. Real-world noise addition, adding a capture of noisy environment (e.g., a
crowded pub),

. Speech addition.

Dynamics changes (numerical):

. Amplitude dynamic compression,

. Multiband companding, specifically defined in the TRECVid evaluation,
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. Volume change, affecting the global volume with a constant or slightly
varying factor.

Temporal changes (numerical):

. Time scale modification, up to þ4% and �4% without affecting the pitch,

. Linear speed change, up to þ4% and �4%, with both tempo and pitch
affected,

. Time shift, the signal is slightly shifted in order to affect the alignment of the
temporal frames. (This will be discussed thoroughly in the next section.)

Acoustic conversions (acoustic):

. D=A A=D conversion, using a commercial analog tape recorder,

. Re-recording, through a loudspeaker=microphone chain. Possibly in a
noisy environment.

These reproducible degradations are shared by almost all the experi-
ments in the literature (Belletini and Mazzini, 2010; Liu, Yun, and Kim
2009; Jang et al. 2009), but very few examples of real-world degradations
are found (Betser, Collen, and Rault 2007; Cano et al. 2002; Pinquier and
André-Obrecht 2004), and all of them are based on radio broadcast record-
ings. In fact, such recordings include most of the artificial degradations
detailed here: the signal is generally numerically encoded, and all the filtering
processes, such as all-pass and band-pass filtering and equalization, are very
common effects in radio broadcast production. This is also true for time scale,
pitch shift, and linear speedmodifications, which are used especially onmusi-
cal tracks. Finally, real-world noise addition is also observed, because most
radio-show hosts speak during the instrumental introduction of the songs.

Synthetic distortions are strictly controlled and studied independently,
whereas real-world radio broadcast signals provide a varied set of complex
combinations among all these distortions. Finally, the audio streaming con-
straint induces the loss of alignment between the original audio excerpts
and the observed audio frames, which will be discussed later on.

These remarks motivate our proposal of an evaluation framework based
on a radio broadcast corpus.

Existing Evaluation Protocols

As stated in the previous section, a large majority of the past contribu-
tions rely on synthetic audio degradations; this constrains the evaluation
protocol and the corpus. Indeed, in most cases, the corpus consists of a
collection of unrelated audio (mostly music) tracks. The queries are subsets
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of the original tracks, on which various degradations are applied. The
dominant evaluation protocol thus consists in detecting in the queries
the original tracks learnt from the corpus.

However, it remains focused on the false rejects (also called false nega-
tives or deletion errors). A slightly different protocol involves a collection of
matching and nonmatching pairs of audio excerpts. The matching pairs
include original clean tracks and their degraded versions, and the non-
matching pairs are arbitrary. Through the number of matching and non-
matching pairs, the balance between false rejects and false alarms (also
called false positives or insertion errors) can be controlled.

Another interesting approach deals with the distances between fingerprint
codes themselves. It cannot evaluate directly the performance of an algorithm,
but the comparison of the distributions of matching and nonmatching finger-
print pairs gives very useful insights on the discriminativity of a fingerprint
code. This was initiated by Haitsma and Kalker (2002), who measure the bit
error rate (BER, i.e., theHamming distance) on the binary Philips fingerprint.

As stated in the previous section, the last protocol encountered in the
literature is based on real broadcast recordings that include occurrences of
the corpus’s audio items. The drawback is a reduced control over the number
of occurrences, but the ‘‘real-world’’ combinations of degradation and the pres-
ence of long sections with no occurrence enforce the realism of the evaluation.

Another major argument in favor of broadcast-oriented evaluation is
the arbitrariness of the occurrences positions in the audio streams, which
imply random desynchronization between the original item signal and
the occurrence signal. Indeed, as stated in a previous publication (Ramona
and Peeters 2011), a slight time-shift between the original audio and the
degraded audio induces distortions on the fingerprint that are more impor-
tant than most degradations. Many evaluations skip this issue because they
apply degradations directly on the original audio sample and thus preserve
the temporal alignment. A real-world corpus implicitly induces random
time-shifts in the occurrences.

Evaluation protocols in the literature also cover a wide range of score
metrics. Generally used with queries as subsets of the corpus, the accuracy
rate (the number of queries correctly identified) is by far the most common
criterion. However, it does not cover false alarms (false positives). A more
thorough approach is to use the false negative=false positive (FN=FP) pair
as a measure of performance. The TRECVid evaluation plan for copy detec-
tion (Smeaton, Over, and Kraaij 2006) also defines a refined metric that
specifically balances false negatives and positives.

When the method involves a threshold or a tunable parameter, a
receiver operating characteristic (ROC) curve is used to illustrate the
evolution of the FP=FN measures with regard to the parameter. The
precision and recall metrics (derived from the FP=FN measures) are also
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used in a similar way. Finally, since audio identification is often based on a
nearest neighbor scheme, instead of computing the accuracy on the first
result, a tolerance can be set to accept detections that are within the N best
ranked. This measure is denoted by ‘‘Top-N.’’

Table 1 summarizes the different evaluation protocols presented here,
together with the score metrics, the size of the corpuses, and the number of
queries. The last line describes the TRECVid copy detection evaluation
task, mentioned earlier. It is the only other evaluation campaign related
to our subject, but it is mostly dedicated to video indexing and does not
propose a specific task for audio identification.

It can be noted that, even though audio identification is typically con-
sidered a large-scale problem, most of the evaluations are limited to a few
thousand, or a even a few hundred, tracks in the corpuses or used as
queries. We hope the framework provided here, and described in the next
section, offers a larger scale than most evaluations mentioned in the table.

PROPOSED EVALUATION FRAMEWORK

Broadcast-Oriented Corpus

The evaluation corpus described in this paper comes from a basic
media monitoring use-case. Given a set of target musical tracks, it

TABLE 1 Comparative List of the Evaluation Protocols in the Literature, Specifying Corpus and
Queries Sizes, Protocols and Score Metrics

Articles Corpus Queries Protocol Metric

(Allamanche et al. 2001)
(Fraunhofer)

15 k NA Subsets AccþTop 10

(Cano et al. 2002) 50 k 12 h (104) SubsetsþBroad FP=FN
(Haitsma and Kalker 2002)
(Philips)

4 4 SubsetsþBER Nb hits

(Wang 2003) (Shazam) 10 k 250 Subsets AccþFP
(Pinquier and Andre-Obrecht 2004) 200 10 h (132) Broad Acc
(Seo et al. 2006) 8 k NA Subsets ROC (Pre=Rec)
(Covell and Baluja 2007) (Google) 10 k 1000 Subsets AccþROC (FP=FN)
(Betser, Collen, and Rault 2007) 30 18 h (243) Broad Recall
(Kim and Yoo 2007) NA 7M Pairs ROC (FP=FN)
(Mohri, Moreno, and
Weinstein 2008)

15 k 3,600 Subsets Acc

(Liu, Yun, and Kim 2009) 13 k 2400 Pairs AccþROC (FP=FN)
(Jie, Gang, and Jun 2009) 500 NA Subsets Top 1,5,10,20,50
(Jang et al. 2009) 100 44 k Pairs AccþROC (FP=FN)
(Belletini and Mazzini 2010) 100 k NA Subsets Acc
(Li, Liu, and Xue 2010) 1,822 100 SubsetsþBER Top 1,5,10þFP=FN
(Smeaton, Over, and Kraaij
2006)(TRECVid)

400 h 12000 Subsets Balanced FP=FN
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determines if and when an audio item has been broadcasted, i.e., the time
of broadcasting and the identity of the target track occurrences.

The evaluation corpus has been drawn in the framework of the subtask
Audio Identification=Fingerprint of the Quaero project. It provides a corpus of
target audio items, for the database building, and several continuous radio
broadcast streams, for the identification. The annotation process was done
semi-automatically and entirely checked by human operators. For the evalu-
ation within the Quaero project, the corpus is characterized by around 8,000
audio items of one minute in length. These audio excerpts correspond to
audio segments previously broadcasted and manually annotated and
extracted. There is one excerpt per audio item, available in RAW format,
little-endian, with 16 bits per sample, at a sampling rate of 11025Hz.

The test audio streams consists in full days of radio stream, from differ-
ent stations, captured and saved in succeeding five-minutes chunks, encoded
in AAC, with a bit-rate of 64 kbps and a sampling rate of 11025Hz. The item
signatures may not be completely broadcasted in the streams. The beginning
of a signature is not known.

For legal reasons, we are not allowed to distribute the whole stream
associated to a media. We hence have built an artificial stream made of a
concatenation of short audio excerpts (from 3 s to 45 s) coming from differ-
ent media. The stream is made up of around 8,000 audio items provided in
4 files of 4 hours each. As the proposed corpus includes real radio broad-
casted items from a set of 15 media, it is likely to cover all the challenges of
audio identification for radio monitoring. For each target audio item, 30
seconds of audio data are provided to compute the fingerprint signature.

The provided corpus is partly synthetic, because it relies on a concat-
enation of excerpts. Nevertheless, it is important to note that the excerpts
themselves come from real-world signals, and thus provide realistic degra-
dations, as stated earlier, considered as the main issue for a serious study
on robustness.

The groundtruth is determined by a set of XML files, one for each media
file. Of course theXML annotation specifies only the items that are present in
the corpus delivered. The annotation, as stated earlier, comes from an audio
identification engine manually checked, with a precision of about 1 s. Each
file lists occurrences of target audio items, with the following XML structure:

<MusicTrack>
<id>123456<=id>
<idMedia>548<=idMedia>
<title>Some kind of wonderful<=title>
<artist>Grand Funk Rail road<=artist>
<album>Caught in the act<=album>
<genre>Pop=Rock International<=genre>

A Public Audio Identification Evaluation Framework 127
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<startDate>2010-07-05 00:03:43<=startDate>

<endDate>2010-07-05 00:03:55<=endDate>
<=MusicTrack>

where:

. <id> identifies the audio item on air between <startDate> and

<endDate>,
. <idMedia> identifies the source media, in order to extract identifi-
cation scores for specific media,

. <title>, <artist>, <album> and <genre> are various metadata on
the target item. This makes it possible, for instance, to extract identifi-
cation scores by genre,

. <startDate> and <endDate> respectively indicate the start and end
time of the elements denoted by the ID. However, since the item signatures
provided for the database build are subsets of the original songs (as stated
earlier), these time limits are larger than the actual occurrence of the item
signature alone. This issue will be thoroughly discussed in the next section.

Audio streams and signature files are freely available for academic
research use.2

Scoring

The present use-case implies the following constraints:

. Occurrences of known audio items are to be detected in an audio stream.

. The audio items are only known through short snippets called audio
signatures.

. The position of these signatures within the original tracks is unknown.

Please note that if audio tracks in the stream are not occurrences of any
item in the corpus, they are not considered as ‘‘occurrences.’’ They are part
of the ‘‘no-item’’ areas described later, like any unknown signal, because
they cannot be recognized.

Scope of Evaluation
Because only a part of the audio items (the signature) is taken into

account in the training process, one could consider the sole signature area
being the track itself, as in Figure 2(a), where an occurrence of a target
item is shown in medium gray, between two areas with no item in light gray;
the signature snippet is shown in dark gray. In this context, detections
timestamps can be evaluated precisely.
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The exclusion of the no-item areas greatly reduces the scope of evalu-
ation. The evaluation should rather imply the whole signal. Because music
tracks generally imply repetitive structures (chorus, verses, etc.), the areas
of the song outside the signatures are likely to present high correlations with
the signatures themselves.3 It would therefore be preferable to exclude the
latter from the evaluation scope, as shown in Figure 2(b), because the notions
of missed detection and false alarms are ambiguous outside the signatures.

However, as stated earlier, the position of the signatures in the tracks is
unknown; it is thus impossible to define the scope of evaluation according
to it. Therefore, the case described in Figure 2(c), implying the whole
signal, is the only one applicable here. Although this configuration is
theoretically less reliable than the previous schemes, this issue is answered
by not considering the temporal positions of the detections in the items, as
discussed in the next paragraph on score metrics.

Score Metrics
The metric for the evaluation of audio identification is based on a punc-

tual event detection scheme, which means that only instants of decision are
taken into account, instead of segments. The possible segmentation of the
signal into frames is exclusively related to the audio identification process,
and is not relevant to the following score metrics.

A previous section exposed the main score metrics found in the litera-
ture. Most evaluations are based on the accuracy (i.e., number of correctly
detected occurrences over the number of occurrences), which is here
equivalent to the Precision measure, and inversely proportional to the false
reject rate (or deletion error rate). The Recall measure is similarly related
to the false alarm rate (or insertion error rate). Note that in the context of
audio identification, no distinction is made by the community between
substitutions (i.e., mistaking an item for another one) and insertions.
ROC curves are also commonly used, but not adapted to an evaluation
framework designed to compare different algorithms. Indeed, in a proper
benchmark, each system is evaluated as a stand-alone application that does
not require any parameter tuning.

This framework is thus restricted to false reject and false alarm mea-
sures. The TRECVid evaluation plan (Smeaton, Over, and Kraaij 2006)
defines several balances between the two measures, but the present use-case

FIGURE 2 Possible evaluation scopes.
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has no preference for a specific error. The counting of the false alarms is
discussed in this section.

Let us denote a collection of N audio occurrences of items. Each occur-
rence n is between time boundaries tstan and tendn in the signal and is related
to an item of index in in the database. The evaluation considers a set of D
punctual detections. Each detection d is related to an item index jd and
instant sd. As stated before, the signature is not precisely located, so that
a correct detection involves only the observation of at least one detection
of the correct item within the scope of the occurrence (the medium
gray ‘‘Audio item’’ scope in Figure 2). The number of correct detections
(Accuracy) is thus defined as:

SOK ¼ Cardfn 2 ½1 . . .N �; 9 d; jd ¼ in and tstan � sd � tendn g: ð1Þ

The number of false rejects is straightforward and is implicit in the
Accuracy definition (SFR¼N� SOK). The global score is defined as the
following rate:

R ¼ 1=N � SOK � ½SFA þ SoutFA �
� �

; ð2Þ

where SFA and SoutFA ; respectively, denote the false alarm rate within and out-
side the occurrences.

The expression of R depends on the definition of the false alarm rates,
which depends on the tolerance accepted. The most straightforward
definition counts each false alarm as one error, as shown in Figure 3(a):

SFA;1 ¼ Cardfd 2 ½1 . . .D�; 9n; tstan � sd � tendn and jd 6¼ ing;
SoutFA;1 ¼ Cardfd 2 ½1 . . .D�; 6 9n; tstan � sd � tendn g:

�
ð3Þ

However, this measure is strongly biased because false alarms are upper
bounded by D (i.e., can be arbitrarily numerous), whereas correct detec-
tions are bounded by the number of occurrences N. The nonhomogeneity

FIGURE 3 Comparison of the false alarms counting methodologies. (Figure is provided in color
online.)
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between the two measures can lead to negatives scores, especially with a
high number of detections.

The scheme presented in Figure 3(b) corrects this balance by grouping
as a single error the false alarms of a same wrong item in a given area. How-
ever, false alarms of distinct items are still counted separately, otherwise the
balance would be strongly biased in favor of correct detections. In order to
unify the evaluation scheme, the areas between the occurrences (No-item
areas in Figure 3) are considered as occurrences where only false alarms
are counted (no item can be detected). Hence, the evaluation does not
consider individual detections, but only the items detected within areas.
False alarms are expressed as follows:

SFA;2 ¼ Cardfn 2 ½1 . . .N �; 9d; tstan � sd � tendn and jd 6¼ ing;
Sout
FA;2 ¼ Cardfn 2 ½1 . . .N �; 6 9d; tstan � sd � tendn g:

�
ð4Þ

The last proposition, illustrated in Figure 3(1c), is a compromise between
the previous two. On a musical radio station, the ‘‘no-item’’ areas are rather
short, and only contain transitions between musical tracks. Other stations,
though, can produce mostly talk shows, lasting several hours. The grouping
of false alarms of the same item separated by long durations is therefore
not relevant. The metric 1.5 counts the false alarms by items within the
occurrences, and by detections outside them:

SFA;1:5 ¼ SFA;2
Sout
FA;1:5 ¼ Sout

FA;1

�
ð5Þ

The three metrics we have detailed are jointly provided and used in the
present evaluation framework. None is favored a priori over the others.
The global scores stand as follows:

R1 ¼ 1=N � SOK � ½SFA;1 þ Sout
FA;1�

� �
ð6Þ

R2 ¼ 1=N � SOK � ½SFA;2 þ Sout
FA;2�

� �
ð7Þ

R1:5 ¼ 1=N � SOK � ½SFA;2 þ Sout
FA;1�

� �
ð8Þ

The PYAFE Evaluation Toolkit

As simple as it may seem at first, the actual implementation of these
scoring metrics can be complex. Researchers should not have to implement
their own version. This would increase the risk of getting several (yet differing)
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implementations of the same scoring metric, therefore compromising the
fair comparison paradigm for which we aim. Moreover, as state-of-the-art
audio fingerprinting systems are getting really close to perfection, it
becomes crucial that the performance of two systems can be compared accu-
rately. That is why we introduce the PYAFE4 toolkit:

Python Audio Fingerprinting Evaluation

PYAFE was developed in the framework of the Evaluation work-package
of the Quaero project and is made freely available as open-source, down-
loadable software.5

It was designed as a modular piece of software, in order to be easily
extended in the future:

. Twomodules provide the necessary functions to parse the groundtruth and
detection XML files (whose formats are described on the PYAFE website).

. The core module includes the implementation of score metrics R1, R2,
and R1.5 described previously. The number of correct detections SOK,
false rejects SFR, and false alarms SFA and Sout

FA are provided.

Included in the PYAFE toolkit, is an all-in-one command line evaluation
tool. It provides an easy-to-use, straightforward way of getting evaluation
results.

This tool actually browses all subdirectories of the groundtruth base
directory looking for annotation files. For each of them, the corresponding
detection file in the detection base directory is evaluated. Depending on the
requested level of verbosity, it can output one single score for the whole set
of files, one score per file, or even the detailed list of errors made for every
single file. Another useful option allows performing the evaluation using
only a subset of audio targets, by providing the list of their identifiers.

The full documentation can be found on the PYAFE website, together
with sample groundtruth and detection files.

APPLICATION OF THE FRAMEWORK FOR THE
QUAERO PROJECT

The Quaero project includes a subproject focused on Audio Identification
and Fingerprinting. Starting in 2010, an audio fingerprinting evaluation
campaign is organized every year during summer, throughout the existence
of the Quaero project. The pilot evaluation took place in September 2010,
for which a dedicated corpus was collected.
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Annotated Radio Broadcast Corpus

This corpus consists in the recording of 5 weeks of the French radio
station RTL, captured and saved on disk in 5-minute chunks. Therefore,
the total duration reaches 840 hours. Similarly to what was described in
Section 3.1, the whole dataset was annotated by manually checking the out-
put of an audio identification engine (with precision around 1 second). The
whole corpus is divided into two parts: four weeks make the training set and
the remaining week constitutes the test set. A set of 7, 309 1-minute-long tar-
get audio signatures was gathered to build the database.

Pilot Evaluation

A few months before the submission deadline, participants were pro-
vided with the training set, the corresponding annotations, and the target
signatures. They were also provided with the PYAFE toolkit, knowing that
this very tool would be used by the evaluation coordinator for the actual
evaluation. The test set—obviously free of any annotation—was then dis-
tributed to participants, and they submitted back the output (XML files)
of their audio fingerprinting systems. Three participants submitted at least
one run for the 2010 Quaero evaluation campaign:

. Participant 1 provided a system based on double-nested FFT, combined
to a k-NN search among the database codes, and a post-processing that
correlates succeeding detection timestamps.

. Participant 2 has developed a fingerprinting system based on the Shazam
algorithm (Wang 2003).

. Participant 3 has developed an audio fingerprinting system that imple-
ments some slight modification over the system described by Haitsma
and Kalker (2002). It is based on quantizing differences of energy
measures from overlapped short-term power spectra.

TABLE 2 Pilot Quaero Evaluation Results

System SOK=N SFA,1 (Sout) R1 SFA,1.5 (Sout) R1.5 SFA,2 (Sout) R2

Participant 1 445=459 0 (2) 96.5% 0 (2) 96.5% 0 (2) 96.5%
Participant 2 381=459 0 (0) 83.0% 0 (0) 83.0% 0 (0) 83.0%
Participant 3 442=459 0 (2) 95.9% 0 (2) 95.9% 0 (2) 95.9%

The false alarm scores are indicated inside and outside the occurrences (respectively, before and
between the parentheses).
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After a necessary adjudication phase during which the test corpus
annotations were corrected when necessary, the final results were publi-
cized within the Quaero consortium. Table 2 reports the results of the
various submitted runs, as provided by the PYAFE toolkit.

CONCLUSION & FUTURE WORK

Audio fingerprint is one of the main industrial challenges of the last
years, related to the diffusion of music. Although many systems have been
proposed to perform this task, no comparison among existing technologies
has been performed because of the lack of unified evaluation frameworks.
In this paper we described a proposal for the evaluation of audio finger-
print algorithms in the case of broadcasted music. This framework contains
the definition of score metrics, their public implementation and a public
test-set corresponding to the use-case of broadcast monitoring of music.
Because this test-set contains radio streams, it naturally allows representing
several degradation types artificially created in previous evaluations. The
whole framework is accessible online. As an example, we presented the
use of this framework and the results obtained during the first Quaero
audio fingerprint evaluation.

The current framework focuses on the punctual detection of music
tracks (‘‘when has this music track been broadcasted?’’) in a corpus, given
a short signature of each track. Further scenarios will include the detection
of the exact boundaries of music track diffusion (‘‘when did this broadcast
radio or TV start playing the song and end it?’’) or boundaries within the
music tracks themselves (‘‘which part of the track has been played?’’).
Further works will concentrate on extending the framework to the detec-
tion of advertisement and jingles in audio streams, as well as blind recur-
rent patterns detection in audio streams (therefore, without previous
knowledge of signatures).

In a further step, it could be worth defining distortion measures
between the reference signature and the broadcasted audio. This could
lead to an objective distortion measure for each corpus.

NOTES

1. Please consult http://quaero.org for more information on the project.
2. http://pyafe.niderb.fr.
3. This correlation cannot be quantified, since it highly depends on the fingerprint code design, but it

suffices to say that it is used as a basic assumption for automatic musical structure retrieval (see
Peeters, Burthe, and Rodet 2002), for an example based on fingerprint techniques).

4. PYAFE is pronounced like the last name of Edith Piaff the famous French singer.
5. http://pyafe.niderb.fr
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